Answer:
Yes cellular respiration is the only way to break down glucose. Cellular respiration takes place by the cell using oxygen to break down glucose.
Answer:
38 kg/m³
0.038 g/mL
Explanation:
Volume of a cube is the side length cubed.
V = s³
Given s = 0.65 m:
V = (0.65 m)³
V ≈ 0.275 m³
The mass is 10.5 kg. The density is the mass divided by volume:
ρ = (10.5 kg) / (0.275 m³)
ρ ≈ 38 kg/m³
Or:
ρ ≈ 0.038 g/mL
Larger elements are able to form in a supernova explosion because the star releases very large amounts of energy as well as neutrons, which allows elements heavier than iron to be produced.
<h3>What is Supernova?</h3>
This is referred to the explosion of a star and it resulting in larger elements being formed through a process known as nucleosynthesis and is usually accompanied by an increase in the brightness of the star.
The elements produced are usually larger than elements such as iron and examples include uranium, gold etc.
This is therefore the reason why it was chosen as the most appropriate choice.
Read more about Supernova here brainly.com/question/27492871
#SPJ1
Answer:
option C = Reactant: 4NH₃ + 6NO → product: 5N₂ + 6H₂O
Explanation:
Chemical equation:
NH₃ + NO → N₂ + H₂O
Balanced chemical equation:
4NH₃ + 6NO → 5N₂ + 6H₂O
Ammonia is react with nitrogen mono oxide and produced nitrogen and water.
Ammonia and nitrogen monoxide are reactants while water and nitrogen are product.
Four number of moles of ammonia react with six nitrogen monoxide and produced five mole of nitrogen and six mole of water.

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.