The correct answer is
Energy of electrons depends on light’s frequency, not intensity.
As per photoelectric effect, if we incident a light on metal surface it will results into emission of electron from it
if we increase the number of photons the number of electrons will increase however if we increase the frequency the number of photons will not increase
While if we increase frequency the energy of electrons will increase as
Energy of photon = Work function of metal + kinetic energy of electrons
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.
Answer:
624510100
Explanation:
Doing a conversion factor:
![0,0006245101[km]*\frac{1000[m]}{1 km} *\frac{1x10^{9} nanometer}{1 m} =624510100 [nanometer]](https://tex.z-dn.net/?f=0%2C0006245101%5Bkm%5D%2A%5Cfrac%7B1000%5Bm%5D%7D%7B1%20km%7D%20%2A%5Cfrac%7B1x10%5E%7B9%7D%20nanometer%7D%7B1%20m%7D%20%3D624510100%20%5Bnanometer%5D)
Answer:- There are 32 valence electrons and it's tetrahedral in shape.
Explanations:- Atomic number of carbon is 6 and it's electron configuration is
. It has 4 electrons in the outer most shell means it has 4 valence electrons.
Atomic number of Br is 35 and it's electron configuration is
. It has 7 electrons in the outer most shell(2 in 4s and 5 in 4p) .
There is one C and four Br in the given compound. So, total number of valence electrons = 4+4(7) = 4+28 = 32
Four Br atoms are bonded to the central carbon atom and also there isn't any lone pair present on carbon. It makes it tetrahedral.