Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x
x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol
Answer:
Wouldn't the Earth's atmosphere be moving too fast that it eventually breaks out?
Explanation:
Do NOT trust me.
Purebred<span> — Also called HOMOZYGOUS and consists of gene pairs with genes that are the SAME. Hybrid - Also called HETEROZYGOUS and consists of gene pairs that are D i'FFEREN'i". </span>Genotype<span> is the actual GENE makeup represented by LE'H'ERS.</span>
Answer:
Once three protons have entered the matrix space, there is enough energy in the ATP synthase complex to synthesize one ATP. In this way, the energy in the hydrogen ion gradient is used to make ATP. ... The mitochondrial hydrogen ion gradient is generated as electrons pass through three membrane complexes.
The correct is tricky, be careful. The right is silicon dioxyde (SiO2)
Silicon Oxides are written in the form SiOx, (0 <x <2), so:
there is no silicon trioxygen and disilicon dioxygen.
SiO is called silicon monoxide and not monosiicon oxygen, so this proposition is false.
All that remains is the silicon dioxide (SiO2) that is written correctly.
Silicon dioxide can be synthesized but also exists in abundance in nature. Silicon (Si) represents about 26% of the Earth's crust. Silica (SiO2), the natural form of silicon dioxide, accounts for about 60%.