Answer is: pH value of weak is 3.35.
Chemical reaction (dissociation): HA(aq) → H⁺(aq) + A⁻(aq).
c(HA) = 0.0055 M.
α = 8.2% ÷ 100% = 0.082.
[H⁺] = c(HA) · α.
[H⁺] = 0.0055 M · 0.082.
[H⁺] = 0.000451 M.
pH = -log[H⁺].
pH = -log(0.000451 M).
pH = 3.35.
pH (potential of
hydrogen) is a numeric scale used to specify the acidity or basicity <span>an aqueous solution.</span>
Answer: Temperature = T, unknown
Saturated Solution, NH4Cl concentration = 60g/100g H2O = 0.6g NH4Cl/g H2O
Assume density of H2O = 1 g/ml
m = 0.6g NH4Cl/g H2O / 1 g/ml
m = 0.6g NH4Cl/ml
See the table of saturated solutions and identify the temperature at which the concentration of NH4Cl is 60g/100g H2O.
Explanation: The line on the graph on reference table G indicates a saturated solution of NH4CL as a concentration of 60. g NH4 Cl/100. g H2O
The question is incomplete. The complete question is :
A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)
Solutions :
If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.
Let's take :


The rate constant =
respectively.
The activation energy and the Arhenius factor is same.
So by the arhenius equation,
and 




Given,
J/mol
R = 8.314 J/mol/K





∴ 
So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.
Answer: For 1 mole of a single atom it is equal to its molar mass. And a single atom, 1 mole is equal to the Avogadro's Number.
Explanation: The relationship can be expressed through the following:
1 mole = molar mass of an atom/ compound
1 atom x 1 mole / 6.022x10^23 atoms