One mole of Na2SO4 is 6.022 * 10^(23) molecules. We can divide this into the quantity in the question to find a value of 1.5/6.022 = 0.2491 moles. Rounded to two significant figures and put in scientific notation, we can rewrite this quantity as 2.5 * 10^(-1) moles
It can be in either state.....
Given :
Number of moles , n = 36.25 mol .
Molarity , M = 1.25 M .
To Find :
The volume of water required .
Solution :
Moarity is given by :

So , 
Here , n is number of moles and M is molarity .
Putting all values in above equation , we get :

Therefore , volume of water required is 29 L .
Answer:
2Zn + 2HCI ➡️ ZnCI2 + H2
LHS of equation
Z = 2
H = 2
Cl = 2
RHS of equation
Zn = 1
Cl =2
H =2
as Zn is not equal in number of atoms on both sides of the equation, the equation does not obey the law of conservation of mass
Explanation:
the law of conservation mass states that the mass of an isolated system cannot be created nor destroyed by any chemical reaction or physical transformation. thus, there must be an equal number of atoms of an element present on both sides of the equation.
#4 and #5:
To find pH given concentration of H+ or H30+
pH = - log (H+ or H30+ M)
To find pH given concentration of OH-
Since you already found the pH for this (in #4), you subtract #4's answer from 14.
14 - (pH) = pOH