Answer: They are close to each other by 41.03 m^3
Explanation:
From Ideal gas equation, PV = nRT
Where n is negligible
R is gas constant = 8.314 J/mol.k
T = 30 + 273 = 303K
P = 1.02 * 103351.5 = 103351.5 Pascal
Then;
PV = RT
V = P/RT
V = 103351.5/(8.314*303)
V = 41.03m^3
Answer:
28.43 min
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 0.1 M
Final concentration
=
M
Time = ?
Applying in the above equation, we get that:-




Answer:

Explanation:
Hello,
In this case, we can consider the following chemical reaction for the oxidation of copper which only occurs at high temperatures:

In such a way, for 0.032 grams of copper, the following grams of copper (II) oxide (black product) are yielded:

Therefore, the percent yield is:

Best regards.
Answer:
If a metal and metal solution react, the more reactive metal will displace the less reactive metal from solution. If the metal in solution you start with is formed from a more reactive metal than the metal to be added, no reaction will occur.