To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,


Here,
m = Mass
V = Velocity
Replacing,


Therefore the final kinetic energy of the two car system is 72.6kJ
Answer:
0.301 m
Explanation:
Torque = Force × Radius
τ = Fr
40.0 Nm = 133 N × r
r = 0.301 m
The mechanic must apply the force 0.301 m from the nut.
Answer:
568.18 N
Explanation:
From the question,
The formula for gravitational potential is given as
Ep = mgh........................ Equation 1
Where Ep = Gravitational potential, m = mass of the diver,h = Height.
But,
W = mg.................... Equation 2
Where W = weight of the diver.
Substitute equation 2 into equation 1
Ep = Wh
Make W the subject of the equation
W = Ep/h................... Equation 3
Given: Ep = 25000 J, h = 44 m
Substitute into equation 3
W = 25000/44
W = 568.18 N.
Hence the weight of the diver = 568.18 N