1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
3 years ago
15

A volleyball player bumps a ball across a net with the velocity and angle shown below. What is the maximum height of the ball?

Physics
1 answer:
Marrrta [24]3 years ago
6 0

Answer:

D. 12.4 m

Explanation:

Given that,

The initial velocity of the ball, u = 18 m/s

The angle at which the ball is projected, θ = 60°

The maximum height of the ball is given by the formula

                             h = u² sin²θ/2g  m

Where,

                           g - acceleration due to gravity. (9.8 m/s)

Substituting the values in the above equation

                            h = 18² · sin²60 / 2 x 9.8

                               = 18² x 0.75 / 2 x 9.8

                               = 12.4 m

Hence, the maximum height of the ball attained, h = 12.4 m

You might be interested in
A world-class sprinter running a 100 m dash was clocked at 5.4 m/s 1.0 s after starting running and at 9.8 m/s 1.5 s later. In w
cupoosta [38]

Answer:

<em>The output power is greater in the interval from 1.0 s to 2.5 s</em>

Explanation:

<u>Physical Power </u>

It measures the amount of work W an object does in certain time t. The formula needed to compute power is

\displaystyle P=\frac{W}{t}

Work can be computed in several ways since we are given the motion conditions, we'll use this formula, for F= applied force, x=distance parallel to F

W=F.x

The second Newton's law gives us the net force as

F=m.a

being m the mass of the object and a the acceleration it has for a given period of time. In our problem, we have two different behaviors for each interval and we must calculate this force since the acceleration is changing. Let's calculate the acceleration in the first interval. We can use the formula for the final speed vf knowing the initial speed vo (which is 0 because the sprinter starts from rest), the acceleration a, and the time t:

v_f=v_o+at

v_f=at

Solving for a

\displaystyle a=\frac{v_f}{t}={5.4}{1}

a=5.4\ m/s^2

The distance traveled in the interval is given by

\displaystyle x=v_o.t+\frac{a.t^2}{2}

Since vo=0

\displaystyle x=\frac{a.t^2}{2}=\frac{5.4(1)^2}{2}

x=2.7\ m

The force is given by

F=m.a

We don't know the value of m, so the force is

F=2.7m

Computing the work done by the sprinter

W=F.x=2.7m(5.4)

W=14.58m

The power is finally computed

\displaystyle P=\frac{W}{t}=\frac{14.58m}{1}

P=14.58m

During the second interval, from t=1 sec to 1.5 sec, the speed changes from 5.4 m/s to 9.8 m/s. This allows us to compute the second acceleration

\displaystyle a=\frac{v_f-v_o}{t}=\frac{9.8-5.4}{0.5}

a=8.8\ m/s^2

The distance is

\displaystyle x=(5.4).(0.5)+\frac{8.8(0.5)^2}{2}

x=3.8\ m

The net force is

F=m(8.8)=8.8m

The work done by the sprinter is now computed as

W=8.8m(3.8)=33.44m

At last, the output power is

\displaystyle P=\frac{33.44m}{0.5}=66.88m

By comparing both results, and being m the same for both parts, we conclude the output power is greater in the interval from 1.0 s to 2.5 s

6 0
3 years ago
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the
JulsSmile [24]

Answer:

(a) 3.9cm

(b) 1.66 x 10⁻⁸s

Explanation:

Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,

F = m x a          --------------(i)

Where;

m = mass of the particle

a = acceleration of the mass

The centripetal acceleration is given by;

a = v² / r          [v = linear velocity of particle, r = radius of circular path]

<em>Therefore, equation (i) becomes;</em>

F = m v²/ r             --------------------(ii)

The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;

F = qvBsinθ          -------------(iii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = angle between the velocity and the magnetic field

<em>Combine equations (ii) and (iii) as follows;</em>

m (v² / r) = qvBsinθ         [divide both side by v]

m v / r = qBsinθ              [make r subject of the formula]

r = (m v) / (qBsinθ)              ---------(iv)

(a) From the question;

v = 1.48 x 10⁷m/s

B = 2.14mT = 2.14 x 10⁻³T

θ = 90°          [since the direction of velocity is perpendicular to magnetic field]

m = mass of electron = 9.11 x 10⁻³¹kg

q = charge of electron = 1.6 x 10⁻¹⁹C

Substitute these values into equation (iv) as follows;

r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)

r = 3.9 x 10⁻²m

r = 3.9cm

Therefore, the radius of the circular path is 3.9cm

(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by

T = d / v          --------------(*)

Where;

d = distance traveled in the circular path in one complete turn = 2πr

v = velocity of the motion = 1.48 x 10⁷m/s

d = 2 π (3.9 x 10⁻²)            [Take π = 22/7 = 3.142]

d = 2(3.142)(3.9 x 10⁻²) = 0.245m

Substitute the values of d and v into equation (*) as follows;

T = 0.245 / 1.48 x 10⁷

T = 0.166 x 10⁻⁷s

T = 1.66 x 10⁻⁸s

Therefore, the time interval is 1.66 x 10⁻⁸s

6 0
3 years ago
Why mole is called fundamental unit.​
gladu [14]

Explanation:

because it doesn't depend upon other unit like kg meter and second

4 0
3 years ago
5 meddi muttasıl örnek
alexandr1967 [171]

Answer:

WHAT'S YOUR LANGUAGE

I CAN'T UNDERSTAND

5 0
3 years ago
Read 2 more answers
Create a model in the space below that demonstrates how action potentials ensue. A sample model can be found under the Unit Pack
Pepsi [2]

Answer:

K+NA+30

Explanation:

8 0
3 years ago
Other questions:
  • An unwary football player collides with a padded goalpost while running at a velocity of 9.50 m/s and comes to a full stop after
    15·1 answer
  • Why might a volcanic eruption lead to cooler temperatures over a large area around the volcano
    9·1 answer
  • The three-toed sloth is the slowest moving land mammal. On the ground, the sloth moves at an average speed of 0.037 m/s, conside
    6·1 answer
  • Which two factors does the power of a machine depend on?
    9·1 answer
  • The atomic number of a nucleus increases during which nuclear reactions?
    6·2 answers
  • What is the formula for sodium sulfide?
    7·1 answer
  • The diagram shows monochromatic light passing through two openings.
    15·1 answer
  • A rope of negligible mass passes over a uniform cylindrical pulley of 1.50kg massand 0.090m radius. The bearings of the pulley h
    10·1 answer
  • A 2.55-m-long rod, as measured in its rest frame, speeds by you longitudinally at 6.11Ã10^7. You measure its length as it passes
    5·1 answer
  • Compare the number of electrons with the number of protons in a charged object.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!