Answer:
a) total moment of inertia is 1359.05 kg m^2
b) angular acceleratio is 0.854rad/sec^2
Explanation:
Given data:
m1=6.9 kg
L=4.88 m
m2=34.5 kg
R=1.22 m
we klnow that moment of inertia for rod is given as
J1=(1/12) ×m×L^2

moment of inertia for sphere is given as
J1=(2/5) ×m×r^2

As object rotates around free end of rod then for sphere the axis around what it rotates is at a distance of d2=L+R
For rod distance is d1=0.5*L
By Steiner theorem
for the rod we get 

for the sphere we get 

And the total moment of inertia for the first case is

b) F=476 N
The torque for system is given as

where a is angle between Force and distance d
and where d represent distance from rotating axis.
In this case a = 90 degree

M=476*2.44 = 1161.44 Nm
The acceleration is calculated as

= 0.854 rad/sec^2
Is the production of electricity by magnetic field.
There are two types of generator which is <u>D</u><u>.</u><u>C</u><u> </u>generator . And A.C <em>g</em><em>e</em><em>n</em><em>e</em><em>r</em><em>a</em><em>t</em><em>o</em><em>r</em>
A.C gen consist of rectangular coil,brushes and permanent magnet
According to the external force mechanical energy used to rotate coil, due to magnetic flux produced by permanent magnet create induced current, this is to according to flemmings right hand rule of electromagnetic induction the rotating coil will produce current
I hope that will help.
Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
<span>In the desert environment the chemical weathering of rocks is generally reduced because there is a lack of rain, in which most chemical weathering is caused by. No rain, no chemicals, no chemical weathering.</span>