Complete Question:
Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)
Answer:
The potential due to these charges is 11250 V
Explanation:
Potential V is given as;

where;
K is coulomb's constant = 9x10⁹ N.m²/C²
r is the distance of the charge
q is the magnitude of the charge
The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:

The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:

Total potential due to this charges = 4500 V + 6750 V = 11250 V
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>
The correct answer is:
<span>Point charges must be in a vacuum.
In fact, the usual form for of the Coulomb's law is:
</span>

<span>where
</span>

is the permittivity of free space
<span>q1 and q2 are the two charges
q is the separation between the two charges
However, this formula is valid only if the charges are in vacuum. If they are in a material medium, the law is modified as follows:
</span>

where

is the relative permittivity, which takes into account the dielectric effects of the material.