Answer:
I believe it is B, not 100% sure though
Explanation:
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
All we can say is that the object's volume is about 41 liters. That's the same as the volume of water displaced.
We can't say anything about the object's weight. There is no direct connection between the weight of the object and the weight of the water it displaces.
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
The time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
<h3>Time of travel of the P-wave</h3>
In rock, S waves generally travel about 60% the speed of P waves, and the S wave always arrives after the P wave.
<h3>Relationship between speed and time</h3>
v ∝ 1/t
v₁t₁ = v₂t₂
t₁/t₂ = v₂/v₁
t₁/t₂ = 0.6v₁/v₁
t₁/t₂ = 0.6
t₁ = 0.6t₂
t₁ = 0.6 x 22 mins
t₁ = 13.2 mins
Thus, the time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
Learn more about P-waves here: brainly.com/question/2552909
#SPJ1