Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Explanation:
Newton's second law of motion states F=ma which means force is equal to mass multiplied by acceleration which in simple terms means If you give mass force it will accelerate the concept of force in physics is any interaction that when unopposed will change the motion of an object.
Answer:
.
Explanation:
The efficiency of a machine is the percentage of energy input that was turned into useful energy.
The power rating of this lamp is
(same as
,) meaning that
of energy is supplied to this lamp every second.
The question states that
out of that
of energy input would be turned into heat, which is not useful energy output in this scenario. Assuming that all other forms of energy loss is negligible. The rest of the
of energy supplied to this lamp would be turned into useful energy output.
Thus, every second, this lamp would receive
of energy input and would outputs
of useful work. The efficiency of this lamp would be:
.