Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2
A baseball would hit the bat harder. This is because the baseball is a lot heavier and more dense than the plastic ball. The keyword that you're looking for is density. The baseball is dense.
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa