Because 'acceleration' does NOT mean 'speeding up'.
It means ANY change in motion ... speeding up, slowing down,
or changing DIRECTION.
When traveling a roundabout, or any curved path, the direction
is constantly changing even if the speed is constant, so there is
constant acceleration going on.
Air for a diver comes out of a high pressure tank at - Same- pressure compared to the water around the diver (metered by the regulator).
This means the lungs are inflated with - Highly pressurized- gas.
This does not adversely affect the diver when deep underwater, because the entire environment around the diver is at -Same - pressure.
If the diver suddenly surface, the air in the alveoli in the lungs will still be at - a higher - pressure compared to the air around the diver, which will be at - a lower - pressure.
The gas in the diver's lungs will - expand - and can damage the alveoli.
Answer:
i) 3.514 s, ii) 5.692 m/s
Explanation:
i) We can use Newton's second law of motion to find out how long does it take for the Eagle to touch down.
as the equation says for free-falling
h = ut +0.5gt^2
Here, h = 10 m, g = acceleration due to gravity = 1.62 m/s^2( on moon surface)
initial velocity u = 0
10 = 0.5×1.62t^2
t = 3.514 seconds
Therefore, it takes t = 3.514 seconds for the Eagle to touch down.
ii) use Newton's 1st equation of motion to calculate the velocity of the lunar module when it hits the surface of the moon
v = u + gt
v = 0+ 1.62×3.514
v= 5.692 m/s
<span>In the </span>natural logarithm<span> format or in equivalent notation (see: </span>logarithm) as:
base<span> e</span><span> assumed, is called the </span>Planck entropy<span>, </span>Boltzmann entropy<span>, Boltzmann entropy formula, or </span>Boltzmann-Planck entropy formula<span>, a </span>statistical mechanics<span>, </span><span> </span>S<span> is the </span>entropy<span> of an </span>ideal gas system<span>, </span>k<span> is the </span>Boltzmann constant<span> (ideal </span>gas constant R<span> divided by </span>Avogadro's number N<span>), and </span>W<span>, from the German Wahrscheinlichkeit (var-SHINE-leash-kite), meaning probability, often referred to as </span>multiplicity<span> (in English), is the number of “</span>states<span>” (often modeled as quantum states), or "complexions", the </span>particles<span> or </span>entities<span> of the system can be found in according to the various </span>energies<span> with which they may each be assigned; wherein the particles of the system are assumed to have uncorrelated velocities and thus abide by the </span>Boltzmann chaos assumption<span>.
I hope this helps. </span>
Vs - velocity on beginning
ve - velocity on ending. You've got:

So he needed 4 second.