At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
<h3>What is Henry's Law ?</h3>
Henry's Law is a gas law states that at a constant temperature the amount of gas that dissolved in a liquid is directly proportional to the partial pressure of that gas.
<h3>What is relationship between Henry's Law constant and Solubility ?</h3>
The solubility of gas is directly proportional to partial pressure.
It is expressed as:

where,
= Solubility of gas
= Henry's Law constant
= Partial pressure of gas
Now put the values in above expression we get

0.080M =
× 1.7 atm

= 0.047 M/atm
Now we have to find the partial pressure of He

0.200 M = 0.047 M/atm × 

= 4.25 atm
Thus from the above conclusion we can say that At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
Learn more about the Henry's Law here: brainly.com/question/23204201
#SPJ4
The volume of chlorine molecules produced at STP would be 96 dm³.
<h3>Stoichiometric problem</h3>
Sodium chloride ionizes during electrolysis to produce sodium and chlorine ions as follows:

This means that 1 mole of sodium chloride will produce 1 mole of sodium ion and 1 mole of chlorine ion respectively.
Recall that: mole = mass/molar mass
Hence, 234 g of sodium chloride will give:
234/58.44 = 4.00 moles.
Thus, the equivalent number of moles of chlorine produced by 234 g of sodium chloride will be 4 moles.
Recall that:
1 mole of every gas at Standard Temperature and Pressure = 24 Liters.
Hence:
4 moles of chlorine = 4 x 24 = 96 Liters or 96 dm³.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
The electron, due to the way an electron orbits the nucleus of an atom.
According to Quantum Mechanics, electrons do not really orbit the nucleus of an atom. In fact, the most tightly bound state, the 1s orbital, has no angular momentum at all. This would be the state with the most "kinetic energy" and yet there is no "orbital" motion at all in this state.
<span>A. Commercial cooking
</span>