<span>Thomson studied electric discharge in a vacuum and found that the deflection of rays was evidence of atoms containing much smaller particles. He calculated that these particles would have a large charge in relation to their mass. While he did not name electrons, he knew they existed.</span>
Answer:
Approximately 100 °C.
Explanation:
Hello,
In this case, since the entropy of vaporization is computed in terms of the heat of vaporization and the temperature as:

We can solve for the temperature as follows:

Thus, with the proper units, we obtain:

Hence, answer is approximately 100 °C.
Best regards.
D because i looked it up lol
Answer is: elements in group 1 will lose electrons to obtain a noble gas structure. They will lose 1 electron.
For example ₃Li 1s²2s¹ will lose one electron from 2s oribtal to obtain helium structure ₂He 1s².
Or sodium ₁₁Na 1s²2s²2p⁶3s¹ will also lose one electron to obtain neon structure ₁₀Ne 1s²2s²2p⁶.
Answer/ explanation :
The find the mass,
We use this formula
Number of mole = mass/ molar mass
Since number of mole = 3.25mol
Number of mass be x
Molar mass of H2SO4
H - 1.00784 * 2= 2.01568
S - 32.065
O - 15.999 * 4 = 63.996
Note there are 2 moles of H and 4 moles of O and 1 mole of S
Molar mass of H2SO4 = 2.01568 + 32.065 + 63.996
= 98.07668g/mol
Number of mole= 3.25mol
3.25 = x / 98.07668
x = 3.25 * 98.07668
= 318.749g
Therefore, the number of mass is 318.749g