1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
2 years ago
13

What is the field outside the capacitor plates in a parallel capacitor?​

Physics
2 answers:
FrozenT [24]2 years ago
7 0

Answer is zero

Plz mark me brainlist

mr Goodwill [35]2 years ago
7 0

Explanation:

Outside two infinite parallel plates with opposite charge the electric field is zero, and that can be proved with Gauss's law using any possible Gaussian surface imaginable

You might be interested in
Which stretch focuses on stretching the glutes and hamstrings while laying on your back?
WINSTONCH [101]

Answer:

knee to chest

Explanation:

I took the test

5 0
2 years ago
Read 2 more answers
If a small sports car collides head-on with a massive truck, which vehicle experiences the greater impact force? Which vehicle e
garri49 [273]

Answer:

Small sports car.

Explanation:

Lets take

mass of the small car = m

mass of the truck = M

As we know that when car collide with the massive truck then due to change in the moment of the car both car as well as truck will feel force.We also know that from Third law of Newton's ,it states that every action have it reaction with same magnitude but in the opposite direction.

Therefore

F = m a

a=Acceleration of the car

a=\dfrac{F}{m}

F= M a'

a'=Acceleration of the massive truck

a'=\dfrac{F}{M}

Here given that M > m that is why a > a'

Therefore car will experiences more acceleration.

5 0
3 years ago
1. Which of the following statements best describes matter?
Rashid [163]

Answer:

Matter is anything that has mass

Explanation:

The word "matter" refers to anything that has mass, either organic or inorganic. Matter is made up of atoms, which consists of a nucleus (made up of protons, positively charged, and neutrons, electrically neutron) and electrons which revolve around the nucleus.

The number of protons in the atom determine the element: there are more than 100 different elements in nature, with different properties depending on the number of electrons they have.

Matter can be in three different states also:

- solid: the atoms are tightly bond to each other, so they cannot move

- liquids: atoms are not bond to each other, so they can slide past each other, but still they have some intermolecular forces that keep them close to each other

- gas: atoms are free to move, as there are no forces that keep them close to each other

7 0
3 years ago
Read 2 more answers
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
Please answer this. Science 7th grade.
nikdorinn [45]

Answer:

the answer would be 2

Explanation:

it would be 2 because if u look at the diagram the darkest arrow is pointsin towards earth and the moon and when the moon is infront of the sun it cause's an eclispe

6 0
3 years ago
Other questions:
  • Two trucks are traveling in the same direction, one going twice as fast as the other. at the end of 6 hours they are 204 miles a
    12·2 answers
  • The noble gases are the least what of any elements on the periodic table
    7·1 answer
  • Eric is creating a timeline of the formation of the solar system. Which sequence best describes the formation of the solar syste
    14·2 answers
  • Which surface produces the least friction when someone walks on it
    7·1 answer
  • How long will it take a person walking at 2.1 m/s to travel 13 m?
    7·1 answer
  • What is the prefix notation of 0.0000738?​
    11·2 answers
  • Which is used to name an ionic compound?
    12·1 answer
  • Which accurately completes the statement? Conduction involves the transfer of electric charge or due to the movement of particle
    14·2 answers
  • A machine that transforms electrical energy into mechanical energy to produce motion.
    7·1 answer
  • A(n) __________ refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!