Answer:
These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)
Answer:
Explanation:
We shall apply law of conservation of momentum in space to know the velocity of combination after the impact
m₁v₁ = m₂v₂
.1 x 4 = ( 1 + .1 ) v₂
v₂ = .3636 m /s
1 )
Kinetic energy of the combination
= 1/2 x 1.1 x ( .3636)²
= 7.3 x 10⁻² J
2 )
Initial kinetic energy of the system
= 1/2 x 0.1 x 4²
= 0.8 J
Final kinetic energy of the system = 7.3 x 10⁻²
Loss of energy = .8 - .073
= .727 J
This energy was converted into internal energy of the system .
3 )
increase in entropy = dQ / T
Here dQ = .727 J
T = 300 ( Constant )
dQ / T = 2.42 X 10⁻³ J/K
Answer:
- Miguel should hand the phone over to a medical personnel.
- A nurse or a physician will respond to the call
Explanation:
From chapter 2 of the book: Medical Assisting: Administrative Skills, Miguel Perez is an administrative assistant. The duties of an administrative assistant in an healthcare professional setting range from performing medical clerical services like keeping patient's files organized, scheduling appointments and answering calls.
So, when a patient has medical concerns and calls the doctor's office, Miguel should answer the phone, know the patient's concerns, put the patient on hold and hand the phone over to a medical personnel - either a nurse or a physician. This is because Miguel is not a trained healthcare professional and cannot offer medical advice or assistance.
Answer:
moment of inertia I ≈ 4.0 x 10⁻³ kg.m²
Explanation:
given
point masses = 50g = 0.050kg
note: m₁=m₂=m₃=m₄=50g = 0.050kg
distance, r, from masses to eachother = 20cm = 0.20m
the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by
= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m
moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center
mathematically,
I = ∑m×d²
remember, a square will have 4 equal points
I = ∑m×d² = 4(m×d²)
I = 4 × 0.050 × (14.12 x 10⁻² m)²
I = 0.20 × 1.96 × 10⁻²
I = 3.92 x 10⁻³ kg.m²
I ≈ 4.0 x 10⁻³ kg.m²
attached is the diagram of the equation