Answer:
The same as the escape velocity of asteorid A (50m/s)
Explanation:
The escape velocity is described as follows:

where
is the universal gravitational constant,
is the mass of the asteroid and
is the radius
and since the scape velocity is 50m/s:

Now, if the astroid B has twice mass and twice the radius, we have that tha mass is: 
and the radius is: 
inserting these values into the formula for escape velocity:

and we have found that
, so the two asteroids have the same escape velocity.
We found that the expression for escape velocity remains the same as for asteroid A, this because both quantities (radius and mass) doubled, so it does not affect the equation.
The answer is
Asteroid B would have an escape velocity the same as the escape velocity of asteroid A
Answer:
Momentum of red car = 5kgm/s
Momentum of blue car = 0kgm/s
Explanation:
Momentum = mass × velocity
For the red car
Mass = 1kg
Velocity = 5m/s
Momentum of the red car = 1kg × 5m/s
Momentum of the red car = 5kgm/s
For the blue car.
Mass = 1kg
Velocity = 0m/s(shows that the blue car is stationery)
Momentum = 1kg ×0m/s
Momentum of the blue car = 0kgm/s
Answer:
a) P=0.25x10^-7
b) R=B*N2*E
c) N=1.33x10^9 photons
Explanation:
a) the spontaneous emission rate is equal to:
1/tsp=1/3 ms
the stimulated emission rate is equal to:
pst=(N*C*o(v))/V
where
o(v)=((λ^2*A)/(8*π*u^2))g(v)
g(v)=2/(π*deltav)
o(v)=(λ^2)/(4*π*tp*deltav)
Replacing values:
o(v)=0.7^2/(4*π*3*50)=8.3x10^-19 cm^2
the probability is equal to:
P=(1000*3x10^10*8.3x10^-19)/(100)=0.25x10^-7
b) the rate of decay is equal to:
R=B*N2*E, where B is the Einstein´s coefficient and E is the energy system
c) the number of photons is equal to:
N=(1/tsp)*(V/C*o)
Replacing:
N=100/(3*3x10^10*8.3x10^-19)
N=1.33x10^9 photons
Answer:
The tensile stress on the wire is 550 MPa.
Explanation:
Given;
Radius of copper wire, R = 3.5 mm
extension of the copper wire, e = 5.0×10⁻³ L
L is the original length of the copper wire,
Young's modulus for copper, Y = 11×10¹⁰Pa.
Young's modulus, Y is given as the ratio of tensile stress to tensile strain, measured in the same unit as Young's modulus.

Therefore, the tensile stress on the wire is 550 MPa.
Answer:
2k
Explanation:
100W X 10h = 1000Wh = 1KWh thus cost is 2k