Answer:
Following are the solution to this question:
Explanation:
That light takes a very long time to hit the planet, and the object is far off the earth. The light of such an item near to the planet takes less time to enter it. The star is 2,5 million light-years from the Planet on the far side of the Andromeda Galaxy. But on the other hand, the moon is 15 crore miles from the earth, so sunlight is quickly reached on the ground as the other thing.
That milky way away from the earth is 66,500 light-years far, that distance between Earth and Orion nebula is 1,344 light-years, with such a distance of 4,367 light-years. The earth is 5.2261 trillion km apart from Pluto.
Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

Answer:
1200 Sm^2mol^-1
Explanation:
Given data :
conductivity of water ( kwater ) = 76 mS m^-1 = 0.076 Sm^-1
conductivity of kcl (aq)( Kkcl ) = 1.1639 Sm^-1
Kkcl = 1.1639 - 0.076 = 1.0879 Sm^-1
Resistance = 33.21 Ω
where conductivity can be expressed as = 
hence cell constant = conductivity * Resistance
= 1.0879 * 33.21 = 36.13m^-1
conductivity of CH3COOH ( kCH3COOH ) = 36.13 / 300
= 0.120 Sm^-1
<u>Determine the molar conductivity of acetic acid</u>
= ( kCH3COOH * 1000 ) / C
C = 0.1 mol dm
= (0.120 * 1000) / 0.1 = 1200 Sm^2mol^-1
Answer:
you calculate a specific type of run for example 100m and it takes 20 seconds to finish and calculate the time it takes them to finish
hope this helps
have a good day :)
Explanation:
<span>Your flexibility decreases. But if you exercise or stretch a few times a week you can slow down the process </span>