Since we are told that 1L of air contains 0.21L of oxygen, you can use the conversion (0.21L O₂)/(1L air). That means that you can just multiply 6.0L by 0.21L to get 1.26L of O₂.
that means that the lungs can hold about 1.26L of oxygen.
I hope this helps. Let me know if anything is unclear.
The answer is +1! Have a great day!
Explanation:
Scandium has atomic number of 21. This means that in it's neutral state its going to have 21 electrons.
a) The full electronic configuration is given as;
1s2 2s2 2p6 3s2 3p6 3d1 4s2
The final electron is placed in the d orbital. The shell is 3d
(b) When scandium has a charge if +1, it has lost an electron. The total number of electrons would now be 21-1 = 20
The electronic configuration would be given as;
1s2 2s2 2p6 3s2 3p6 4s2
The electron in the 3d orbital would be removed.
Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C
Answer:
C.
increasing level of carbon dioxide