Answer:
Helium
Explanation:
Helium is most likely to undergo a chemical reaction because
- It has a complete electron shell, so it does not need any more electrons
- Its electrons are closest to the nucleus, so it is extremely difficult to remove them
One isomer is formed
1,1- Dichloroethane is the isomer.
If another hydrogen of c2h5cl is replaced by a chlorine atom to yield c2h4cl2, it would result in one isomer.
- In contrast to 1,2-dichloroethane, which has two chlorine atoms connected to distinct carbon atoms, 1,1-dichloroethane has two chlorine atoms bound to the same carbon atom.
- Isomers are each of two or more compounds having the same formula but various atom arrangements in the molecule and unique characteristics.
<h3>What three types of isomers are there?</h3>
- Chain isomers
- Functional group isomers
- Positional isomers
These are the three different categories of structural isomers.
<h3>How is an isomer recognized?</h3>
- Their bonding patterns and the way they occupy three-dimensional space can be used to distinguish them.
- Determine the bonding patterns of structural (constitutional) isomers.
- Although the atoms in the compounds are the same, their connections create various functional groups.
<h3>What makes isomers significant?</h3>
- Because two isomers might have the same chemical formula but different chemical structures, they are significant.
- The molecule's properties are influenced by its structure.
To learn more about isomers visit:
brainly.com/question/12796779
#SPJ4
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
As you can see in the picture we have +ΔH so that means for this reaction we need to GET heat. so the answer is A. endothermic :))
i hope this is helpful
have a nice day
Answer:
O lowering the temperature of the system