The top pair of pliers failed to loosen a stubborn bolt, but the bottom pair successfully removed it. Because the contact between the bolt and the pliers working surface is less.
<h3>What is mechanical advantage ?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system, it is used to obtained efficiency of the given mechanical machine.
The efficiency to open the stubborn bolt depends upon the contact between the working surface of the pliers and the bolt.
The contact between the bolt and the top pair of pliers working surface is less. Its mechanical advantage is less.
Hence, the top pair of pliers failed to loosen a stubborn bolt, but the bottom pair successfully removed it.
To learn more about the mechanical advantage, refer to the link;
brainly.com/question/7638820
#SPJ1
Answer:
66w
Explanation:
p=w/t
p=660/10
p=66
prolly a bad explanation but hope it helps...
Answer:
m=57.65 kg
Explanation:
Given Data
Ricardo mass m₁=80 kg
Canoe mass m₂=30 kg
Canoe Length L= 3 m
Canoe moves x=40 cm
When Canoe was at rest the net total torque is zero.
Let the center of mass is at x distance from the canoe center and it will be towards the Ricardo cause. So the toque around the center of mass is given as

We have to find m₂.To find the value of m₂ first we need figure out the value of.As they changed their positions the center of mass moved to other side by distance 2x.
so
2x=40
x=40/2
x=20 cm
Substitute in the above equation we get

Answer:
0
Explanation:
F1 = G•2.2•4.66/3² (pointed right)
F2 = G•2.2•4.66/3² (pointed left)
subtract the two to get zero
The question is incomplete. I can help you by adding the information missing. They want you to calculate a) the radius of the cyclotron orbit for an electron with speed 1.0 * 10^6 m/s^2 and b) the radius of a cyclotron orbit for a proton with speed 5.0 * 10^4 m/s.
The two tasks involve combining the equations of the magnectic force and the centripetal force in a circular motion.
When you do that, you will obtain an expression to find the radius of the circular motion, which is the radius of the cyclotron that impulses the particles.
a)
Magentic force, F = q*v*B
q is the charge of the electron = 1.6 * 10^ -19 C
v is the speed = 1.0 * 10 ^ 6 m/s
B is the magentic field = 5.0 * 10 ^-5 T
Centripetal force, F = m*Ac = m * v^2 / R
where,
Ac = centripetal acceleration
m = mass of the electron = 9.11 * 10 ^-31 kg
R = the radius of the orbit
Now equal the two forces: q*v*B = m * v^2 / R => R = m*v / (q*B)
=> R = (9.11 * 10^31 kg) (1.0*10^6m/s) / [ (1.6 * 10^-19C)* (5.0 * 10^-5T) ]
=> R = 0.114 m
b) The equations are the same, just now use the speed, charge and mass of the proton instead of those of the electron.
R = m*v / (qB) = (1.66*10^-27 kg)(5.0*10^4 m/s) / [(1.6*10^-19C)(5*10^-5T)]
=> R = 10.4 m