Answer:
33.33 m/s
Explanation:
m = 450 kg. T = 5000 N, t = 3 seconds,
let the net acceleration is a.
T = m a
a = 5000 / 450 = 11.11 m/s^2
u = 0 , v = ?
Let v be the velocity after 3 seconds.
Use first equation of motion
v = u + a t
v = 0 + 11.11 x 3 = 33.33 m/s
Whenever an object is in projectile motion, that is, it has 2-dimensional motion in the x and y axis, the resultant force on the object is in the y-direction.
This is because once the object has been projected, or the ball has been kicked in this case, there is no longer a force being applied on it in the x-direction. The air resistance is also neglected so the ball's final velocity in the x-direction is equal to its initial velocity in the x-direction.
However, the force of gravity cannot be neglected and causes the ball to come downwards. Therefore, after the ball has been projected, the net force on the ball is downwards, due to gravity.
<u>Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own. The detector’s search coil receives the retransmitted field and alerts the user by producing a target response. metal detectors are capable of discriminating between different target types and can be set to ignore unwanted targets.
</u>
1. Search Coil
The detector’s search coil transmits the electromagnetic field into the ground and receives the return electromagnetic field from a target.
2. Transmit Electromagnetic Field (visual representation only - blue)
The transmit electromagnetic field energises targets to enable them to be detected.
3. Target
A target is any metal object that can be detected by a metal detector. In this example, the detected target is treasure, which is a good (accepted) target.
<em>hope this helps PLEASE MARK AS BRAINLIEST:)</em>
Answer:
The correct option is D) Fission
Explanation:
There are several methods through which Radioactive isotopes are created.
- Using a nuclear reactor that has a field of neutrons, insert a stable sample such as Lutetium-176. When it gets bombarded with neutrons, it acquires some, and fission is said to have occurred. Note that when Lutetium-176 acquires a neutron, it becomes radioactive Lu-177.
- Fission is also used to create Fluorine-18. To obtain the same, you need to bombard pure or enriched [
] water with ~18 MeV protons which are high energy in nature. The bombarding is achieved using a cyclotron or an accelerator.
Cheers