The answer is B high pressure.
Answer:
Explanation: y’all taking the same test as me hahahahah I got the answers but I can’t attach the picture here so hit me up on snap daniela_0789
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
Answer:
The acceleration is 6 [m/s^2]
Explanation:
We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.
![v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2B%20a%2At%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%20%3D%20final%20velocity%20%3D%2022%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%20%3D%20initial%20velocity%20%3D%204%20%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%3D%203%20%5Bs%5D%5C%5C)
Now replacing the values we have:
![a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_%7Bf%7D%20-%20v_%7Bi%7D%20%7D%7Bt%7D%20%5C%5Ca%3D%5Cfrac%7B22%20-%204%20%7D%7B3%7D%5C%5Ca%20%3D%206%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Mechanical advantage is the amount by which a machine multiplies input force. It is a measure of the force amplification using a tool or machine system.