Answer:
M.Mass = 120 g/mol
Explanation:
Data Given:
Volume = V = 0.0650 L
Temperature = T = 547 °C = 820.15 K
Pressure = P = 70.5 kPa = 0.695 atm
Gas Constant = R = 0.082057 L.atm.mol⁻¹.K⁻¹
Formula Used:
Assuming that the gas is ideally then according to ideal gas equation,
P V = n R T
Solving for n,
n = P V / R T
Putting Values,
n = (0.695 atm × 0.0650 L) ÷ (0.082057 L.atm.mol⁻¹.K⁻¹ × 820.15 K)
n = 6.71 × 10⁻⁴ moles
Now, Knowing that,
Moles = Mass / M.Mass
Or,
M.Mass = Mass / Moles
Putting values,
M.Mass = 8.06 × 10⁻² g / 6.71 × 10⁻⁴ mol
M.Mass = 120 g/mol
Answer:
A) a new type of refrigerant that is less damaging to the environment is developed. Applied development
B) a new element is synthesized in a particle accelerator. Basic development.
C) a computer is redesigned to increase the speed of the computer. Technological development.
Explanation:
Answer:
C. 7.50g
Explanation:
The percent (%) by mass of a solute in a solution refers to the number of grams contained in 100g of solution by that solute. In this case, 5% by mass of pottasium chloride (KCl) means 5g of KCl is contained in 100g of solution.
Therefore, in 150g of solution, there would be:
5g/100g × 150g
= 0.05 × 150
= 7.50g of KCl solute.
Hence, 7.50g of pottasium chloride would be expected to be collected by evaporating 150.0 g of the solution.
Answer:
A. Condensation
B. Evaporation
Explanation:
Condensation releases energy when water vapor condenses to form water droplets. Evaporation absorbs energy whenever it changes from liquid to gas, the heat from the sun heats the water up and absorbs energy.