Answer: A. Internal energy : May be viewed as the sum of the kinetic and potential energies of the molecules
B. Latent heat: The internal energy associated with the phase of a system.
C. Chemical (bond) energy : The internal energy associated with the atomic bonds in a molecule
D. Nuclear energy : The internal energy associated with the bonds within the nucleus of the atom itself
Explanation:
Internal energy is defined as the total energy of a closed system. Internal energy is the sum of potential energy of the system and the kinetic energy of the system. It is represented by symbol U.
Latent heat is the thermal energy released or absorbed by a thermodynamic system when the temperature of the system does not change. It is thus also called as hidden heat.
Chemical energy is the energy stored in the bonds of molecules.
Nuclear energy is the energy which is stored in the nucleus of an atom called as binding energy within protons and neutrons.
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol
Answer:
the answer is ionic
Such a bond forms when the valence (outermost) electrons of one atom are transferred permanently to another atom. ... The atom that loses the electrons becomes a positively charged ion (cation), while the one that gains them becomes a negatively charged ion (anion). A brief treatment of ionic bonds follows
According to the principle, electrons fill orbitals starting at the lowest available energy states before filling higher states (e.g., 1s before 2s). The Madelung energy ordering rule: Order in which orbitals are arranged by increasing energy according to the Madelung Rule.
hi
I hope u understand