Answer:
50421.6 m³
Explanation:
The river has an average rate of water flow of 59.6 m³/s.
Tributary B accounts for 47% of the rate of water flow. Therefore the rate of water flow through tributary B is:
Flow rate of water through tributary B = 47% of 59.6 m³/s = 0.47 * 59.6 m³/s = 28.012 m³/s
The volume of water that has been discharged through tributary B = Flow rate of water through tributary B * time taken
time = 30 minutes = 30 minutes * 60 seconds / minute = 1800 seconds
The volume of water that has been discharged through tributary B in 30 seconds = 28.012 m³/s * 1800 seconds = 50421.6 m³
Answer:
Tech B
Explanation:
Horsepower (hp) refers to a unit of measurement of power in respect of the output of engines or motors.
Horsepower is the common unit of power. It indicates the rate at which work is done.
The formula
, where rpm is the engine speed, T is the torque, and 5,252 is radians per second.
So,
Tech B is correct
Explanation:
For true Strain:
step 1:
E true = Ln(1 + 0.5 ) = 0.40
Step 2:
E true = Ln(1 + 0.33 ) = 0.29
By single step process:
E true = Ln(1 + 1 ) = 0.69
total strain of step process = 0.40 + 0.29 = 0.69 units
SO TRUE STRAIN IS ADDITIVE.
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².