Stars are located at a distance which are measured in terms of light years. Light year is an Astronomical unit used to measure distance between distant Celestial bodies.
1 light year = 9460730472580<span>800 metres
But no star is located at a distance of 1 light year. Some stars are located at millions of light years and light travels ~ 3 x 10</span>⁸ m/s. Thus light takes time to reach our atmosphere.
Answer:
<em>The wave will be travelling in the y-axis</em>
Explanation:
An e-m wave has a spatially varying electric field that is always associated with a magnetic field that changes over time and vice versa. The electric field and the magnetic field oscillates perpendicularly to each other, and together form a wave that travels in a perpendicular direction to the magnetic and the electric field in space. The movement of the e-m wave through space is usually away from the source where it is generated. So, if the electric field travels in the z-axis, and the magnetic field travels through along the x-axis, then the e-m wave generated will travel in the y-axis direction.
Consider the projectile launched at initial velocity V at angle θ relative to the horizontal.
Neglect wind or aerodynamic resistance.
The initial vertical velocity is Vsinθ.
When the projectile reaches its maximum height of h, its vertical velocity will be zero.
If the time taken to attain maximum height is t, then
0 = Vsinθ - gt
t = (Vsinθ)/g, where g = acceleration due to gravity.
The horizontal component of launch velocity is Vcosθ. This velocity remains constant because aerodynamic resistance is ignored.
The time to travel the horizontal distance D is twice the value of t.
Therefore
D = Vcosθ*[(2Vsinθ)/g]
= (2V²sinθ cosθ)/g
= (V²sin2θ)/g
In order for D (horizontal distance) to be maximum,

That is,

Because

, therefore cos(2θ) = 0.
This is true when 2θ = π/2 => θ = π/4.
It has been shown that the maximum horizontal traveled can be attained when the launch angle is π/4 radians, or 45°.
Answer:
333 N
Explanation:
The weight of an object is given by:

where
m is the mass of the object
g is the acceleration of gravity
For the mower in the problem,
m = 34 kg
Also

So, the weight of the mower is
