It Is Called The Parent Nuclide
Suppose we have 100 gr of the substance. Then by weight, it would contain 44.77 gr of C, 7.46 gr of H and 47.76 gr of S. We need to look up the atomic weights of these atoms; M_H=1, M_C=12, M_S=32. The following formula holds (where n are the moles of the substance, M its molecular mass and m its mass): n=m/M. Substituting the known quantities for each element, we get that the substance has 3.73 moles of C, 7.46 moles of H and 1.49 moles of S. In the empirical formula for the molecule, all atoms appear an integer amout of times. Hence, for every mole of Sulfur, we have 2.5 moles of C and 5 moles of H (by taking the moles ratios). Thus, for every 2 moles of sulfur, we have 5 moles of C and 10 moles of H. Now that all the coefficients are integer, we have arrived at an empirical formula for the skunk spray agent:
Answer:
Some bacteria like <em><u>rhizobium</u></em> and <u><em>blue green algae</em></u> are able to fix nitrogen gas from the atmosphere to enrich the soil with nitrogen compounds and increase its fertility. The nitrogen-fixing bacteria and blue green algae are called <u><em>biological nitrogen fixers.</em></u>
Answer:
The correct option is;
Placing one drop of food coloring in a cup with 60 ml of water at 10°, placing one drop of food coloring in a second cup with 60 ml of water at 40°C
Explanation:
The experimental setup that would allow the student investigate the connection between kinetic energy and temperature should be made up of the following characteristics
1) The constant terms for the experiment should be defined, which in this case are
a) The volume of the water which is 60 ml in both subjects of the experiment
2) The definition of the variable that produces the effect that is being monitored, which is the use of the different temperatures in the two experimental subjects
3)The environmental limits of the experiment, which is the water and the food coloring used
Answer:
The atomic mass on the periodic table is a decimal number because it is an average of the different isotopes of an element.
P.S.
An isotope is each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element.