The frequency of a wave is the number of waves that passes through a point in a certain time. The less waves that pass in a period of time the lower the frequency of the wave. The more waves that pass in a period of time the higher the frequency of the wave. When measuring wave length the time period used is usually one second.
Answer:
0.657 seconds
Explanation:
speed of wave= wavelength / time period
so
time period= wavelength / speed
= 4.6/7
=0.657 sec
Answer: Acceleration due to gravity
Explanation: Force, F = mg, is a vector quantity because the acceleration due to gravity, g, is a vector quantity. Explanation: F = mg Where m is the mass (in kilograms) of the object in question and g is the acceleration due to gravity. Mass is a scalar quantity; mass has no dependence on direction whatsoever.
I am using the equation F=ma (force equals mass times acceleration) to solve these problems.
1. You are looking for force, and have mass and acceleration. You just plug in the values for mass and acceleration to get the force needed.
F=(15kg)(5m/s^2)
F=75N
2. Again, you are looking for force, and just need to plug in the values for mass and acceleration
F=(3kg)(2.4m/s^2)
F=7.2N
3. In this problem, you have force and mass, but need to find acceleration. To do this, you need to get acceleration alone on one side of the equation - divide each side by m. Your equation will now be F/m=a
a=(5N)/(3.7kg)
a=18.5m/s^2
I did not use significant figures. Let me know if you need to do that and need any help on that. Hope this helps!
Answer:
Part a)

Part b)
Since the radius is decreasing so induced current will increase the flux through the coil
So it would be clockwise in direction
Explanation:
As we know that magnetic flux linked with the coil is given as

now the rate of change in flux is given as

now we know that circumference is decreasing at rate of 15 cm/s
so here we know the length of circumference as

So rate of change in circumference is


final length of circumference at t = 8 s

Part a)
Now the induced EMF is given as



Part b)
Since the radius is decreasing so induced current will increase the flux through the coil
So it would be clockwise in direction