Answer: 5.075Ns
Explanation:
Given the following :
Mass of ball = 145g
Initial Speed of ball = 15m/s
Final speed of ball when hit by the batter = - 20m/s ( Opposite direction)
The impulse of a body is represented using the relation:
Force(f) * time(t) = mass (m) * (final Velocity(V) - initial velocity(u))
Therefore, using:
m(v - u) = impulse
Mass of ball = 145 / 1000 = 0.145kg
Impulse = 0.145(- 20 - 15)
Impulse = 0.145(-35)
Impulse = 5.075Ns
Answer:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. At all instances, the object is moving tangent to the circle.
Explanation:
No becuase a round room has no corners so no
Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder
An electric dipole consists of a particle with a charge of 6 x 10⁻⁶ c at the origin and a particle with a charge of –6 x 10⁻⁶ c on the x axis at x = 3 x 10⁻³ m. Its dipole moment is 18 x 10⁻⁹ Cm
Dipole moment of a dipole is dependent on the charge of the dipole and the distance between the two charges.
Electric Dipole consists of two charges which are equal and opposite in charge i.e. positive and negative charges.
Given,
Dipole moment, p = ?
Charge, q = 6 x 10⁻⁶C
Distance between charges, d = 3 x 10⁻³ m
Dipole moment (p) is given by:
p = charge x distance between the two charges
p = 6 x 10⁻⁶ x 3 x 10⁻³ Cm
p = 18 x 10⁻⁹ Cm
The dipole moment for the given charge configuration is 18 x 10⁻⁹ Cm
Learn more about Dipole moment here, brainly.com/question/14058533
#SPJ4