1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
10

A can bavelling at 90kma/hr

Physics
1 answer:
Readme [11.4K]3 years ago
5 0

Answer:

20 mins

Explanation:

To go 90 km it takes =60 mins(1 hr)

" " 1 km it takes =60/90 mins

" " 30 km it takes =60/90 multiplied by 30

= 20 mins

You might be interested in
You're caught running a red light on Hwy 316. Attempting to impress the skeptical patrol officer with your physics knowledge, yo
timurjin [86]

Answer:

Explanation:

We shall apply here Doppler's effect in optics . The formula is as follows

\frac{\triangle\lambda }{\lambda } = \frac{v}{c}

Δλ is change in wavelength , λ is original wavelength , v is velocity and c is velocity of light

Δλ = 685 - 590 = 95 nm

λ = 685

95 / 685 = v / 3 x 10⁸

v = .416 x 10⁸ m / s

= 4.16 x 10⁷ m /s

3 0
3 years ago
A block is given an initial velocity of 8.0 m/s up a frictionless 28° inclined plane. (a) What is its velocity when it reaches t
kramer

Answer:

A.) 8 m/s

B.) 7.0 m

Explanation:

Given that a block is given an initial velocity of 8.0 m/s up a frictionless 28° inclined plane.

(a) What is its velocity when it reaches the top of the plane?

Since the plane is frictionless, the final velocity V will be the same as 8 m/s

The velocity will be 8 m/s as it reaches the top of the plane.

(b) How far horizontally does it land after it leaves the plane?

For frictionless plane,

a = gsinø

Acceleration a = 9.8sin28

Acceleration a = 4.6 m/s^2

Using the third equation of motion

V^2 = U^2 - 2as

Substitute the a and the U into the equation. Where V = 0

0 = 8^2 - 2 × 4.6 × S

9.2S = 64

S = 64/9.2

S = 6.956 m

S = 7.0 m

4 0
3 years ago
Three point charges are placed on the y-axis: a charge q at y=a, a charge –2q at the origin, and a charge q at y= –a. Such an ar
den301095 [7]

Answer:

electric field   Et = kq [1 / (x-a)² -2 / x² + 1 / (x+a)²]

Explanation:

The electric field is a vector, so it must be added as vectors, in this problem both the charges and the calculation point are on the same x-axis so we can work in a single dimension, remembering that the test charge is always positive whereby the direction of the field will depend on the load under analysis, if the field is positive, if the field is negative.

 a) Let's write the electric field for each charge and the total field

       E = k q /r

With k the Coulomb constant, q the charge and r the distance of the charge to the test point

       Et = E1 + E2 + E3

       E1 = k q / (x-a)²

       E2 = k (-2q) / x²  

       E3 = k q / (x + a)²

       Et = kq [1 / (x-a)² -2 / x² + 1 / (x+a)²]

The direction of the field is along the x axis

b) To use a binomial expansion we must have an expression the form (1-x)⁻ⁿ  where x << 1, for this we take factor like x from all the equations

       Et = kq/ x² [1 / (1-a/x)² - 2 + 1 / (1+a/x)²]

We use binomial expansion

     (1+x)⁻² = 1 -nx + n (n-1) 2! x² +… x << 1

     (1-x)⁻² = 1 +nx + n (n-1) 2! x² + ...

They replace in the total field and leaving only the first terms

       

   Et =kq/x² [-2 +(1 +2 a/x + 2 (2-1)/2 (a/x)² +…) + (1 -2 a/x + 2(2-1) /2 (a/x)² +.) ]

   Et = kq/x² [a²/x² + a²/x²2] = kq /x² [2 a²/x²]

Et = k q 2a²/x⁴

point charge

Et = k q 1/x²

Dipole

E = k q a/x³

3 0
3 years ago
In order to identify them, animal fossils and other fossils nearby can be: A. compared B. piled C. seen
tigry1 [53]

Answer:

A.compared

Explanation:

Fossils help figure out the time that organisms lived. If you know one of the fossils, it can be used as a reference for others around.

5 0
3 years ago
Four equal masses m are so small they can be treated as points, and they are equallyspaced along a long, stiff mass less wire. T
gavmur [86]

The moment of inertia of a point mass about an arbitrary point is given by:

I = mr²

I is the moment of inertia

m is the mass

r is the distance between the arbitrary point and the point mass

The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.

The total moment of inertia of the system is the sum of the moments of each mass, i.e.

I = ∑mr²

The moment of inertia of each of the two inner masses is

I = m(ℓ/2)² = mℓ²/4

The moment of inertia of each of the two outer masses is

I = m(3ℓ/2)² = 9mℓ²/4

The total moment of inertia of the system is

I = 2[mℓ²/4]+2[9mℓ²/4]

I = mℓ²/2+9mℓ²/2

I = 10mℓ²/2

I = 5mℓ²

4 0
3 years ago
Other questions:
  • Why aren't iron, cobalt and iron in the same group of elements?
    10·1 answer
  • A bicyclist rides 1.86 km due east, while the resistive force from the air has a magnitude of 5.12 N and points due west. The ri
    6·1 answer
  • Which of the following is a CHEMICAL factor affecting marine biomes?
    13·1 answer
  • Why does aluminum expand more than copper
    15·2 answers
  • If you have a 100-watt light bulb, how much energy does it use each minute?
    8·1 answer
  • If a 2-kg ball is thrown through the air at 20 m/s what is the momentum of the ball?
    14·1 answer
  • How can you tell that this is a combustion reactionn
    14·1 answer
  • Give proof that mass is constant and weight keeps changing.​
    8·1 answer
  • Base your answers to questions 4 and 5 on the informa- tion below
    10·1 answer
  • a plane flies 400 km east from city a to city b in 45.0 min and then 980 km south from city b to city c in 1.50 h. (assume the x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!