Answer:
f = 3.09 Hz
Explanation:
This is a simple harmonic motion exercise where the angular velocity is
w² =
to find the constant (k) of the spring, we use Hooke's law with the initial data
F = - kx
where the force is the weight of the body that is hanging
F = W = m g
we substitute
m g = - k x
k =
we calculate
k =
k = 3.769 10² m
we substitute in the first equation
w² =
w = 19.415 rad / s
angular velocity and frequency are related
w = 2πf
f =
f = 19.415 / 2pi
f = 3.09 Hz
Answer: That the storm is moving toward hillville and that residents should be prepared.
Explanation:
Answer:
6858.5712 m/s
Explanation:
Given that:
Radius, r
R = 3.20 * 10^3.
Normal force = 0.5 * normal weight
Normal force = Fn ; Normal weight = Fg
Fn = 0.5Fg
Recall:
mv² / R = Fn + Fg
Fn = 0.5Fg
mv² / R = 0.5Fg + Fg
mv² /R = 1.5Fg
mv² = 1.5Fg * R
F = mg
mv² = 1.5* mg * R
v² = 1.5gR
v = sqrt(1.5gR)
V = sqrt(1.5 * 9.8 * 3.2 * 10^3)
V = sqrt(47.04^3)
V = 6858.5712 m/s
The inaccurate measurements must be similar to the other two measurements (ex; 590, 589, 599), but different from the actual volume of water. (Ex; the actual volume is let say.. 100, but you measured 50, 49, 40)
Hey mate
Here is your answer
Option A)
Explanation:
The larger the amplitude of the waves, the louder the sound. Pitch (frequency) – shown by the spacing of the waves displayed. The closer together the waves are, the higher the pitch of the sound.
Pls mark as brainliest