Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
Compare the initial mass to the final mass.
Explanation:
Given parameters:
Distance = 15miles north = 24140.2m
Initial velocity = 0m/s
Final velocity = 4m/s
Unknown:
Speed, velocity and acceleration = ?
Solution:
The speed is the distance divide by time. It is a scalar quantity and has no directional attribute.
Speed =
The speed of the student is 4m/s
Velocity is the displacement divided by time. It is a vector quantity which specifies the direction and magnitude;
Velocity =
The velocity of the student is 4m/s due north
Acceleration is the change in velocity with time;
To find the acceleration, we use
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
4² = 0² + 2x a x 24140.2
a =
= 0.00033m/s²
Answer:
divide the mass value by 1e+8