Answer:
The Statement is wrong because the reverse is the case as it is the kinetic energy that is being transformed to gravitational potential energy.
Explanation:
As your friend throws the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

Here m is the mass of the baseball
Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)
as energy can not be destroyed but converted to a different form according to the first law of thermodynamics
Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.
Answer:
x = 45 cm
Explanation:
Given that,
The length of a rod, L = 50 cm
Mass, m₁ = 0.2 kg
It is at 40cm from the left end of the rod.
We need to find the distance from the left end of the rod should a 0.6kg mass be hung to balance the rod.
The centre of mass of the rod is at 25 cm.
Taking moments of both masses such that,

The distance from the left end is 40+5 = 45 cm.
Hence, at a distance of 45 cm from the left end it will balance the rod.
A sort of electricity is a light bulb or a phone / computer charger. plants food water. the sun and rain . that’s what i’m guessing!
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²