This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Answer:4. Two charged objects have a repulsive force of 0.080 N. If the distance separating the objects is tripled, then what is the new force? Explanation: The electrostatic force is inversely related to the square of the separation distance.
Explanation:
a.) K 2=K 1 +GmM( r 21− r 11)=2.2×10 7J
b.) K 2 +GmM( r 11− r 21)=6.9×10 7 J
Applying Law of Energy conservation :
K 1+U 1
=K 2+U 2
⇒K 1− r 1GmM
=K 2− r 2 GmM
where M=5.0×10 23kg,r1
=> R=3.0×10 6m and m=10kg
(a) If K 1
=5.0×10 7J and r 2
=4.0×10 6 m, then the above equation leads to
K 2=K 1 +GmM (r 21− r 11)=2.2×10 7J
(b) In this case, we require K 2
=0 and r2
=8.0×10 6m, and solve for K 1:K 1
=K 2 +GmM (r 11− r 21)=6.9×10 7 J
Learn more about Kinetic energy on:
brainly.com/question/12337396
#SPJ4
Answer:
i hardly havent got teach this sorry