The answer to the question is C
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

Answer:
The nuclear decay of radioactive elements is a process that is a useful tool for determining the absolute age of fossils and rocks. It is used as a clock, in which daughter elements or isotopes converted from parent isotopes by decaying at a particular time.
Radioactive decay rates are constant and do not change over time. It is measured in half-life. A half-life is a time it takes half of a parent isotope to decay and converted into a stable daughter isotope. How many parent isotopes and daughter isotopes present in the fossil or their abundance can help in determining the age of fossil or rock.