Aluminum is the correct answer
Answer:
A. 28 years
Explanation:
Applying,
R = R'(2ᵃ/ⁿ).............. Equation 1
Where R = Original sample, R' = Sample left after decay, a = Total time taken to decay, n = half life.
From the question,
Given: R = 12 g, R' = 6 g, a = 28 years.
Substitute into equation 1 and solve for n
12 = 6(2²⁸/ⁿ)
12/6 = 2²⁸/ⁿ
2²⁸/ⁿ = 2
Equation the base,
28/n = 1
n = 28 years.
Hence the half-life is 28 years
Answer:
The answer to your question is 1 M
Explanation:
Data
Molarity = ?
mass of CaCl₂ = 222.2 g
Volume = 2 l
Process
1.- Calculate the molar mass of CaCl₂
CaCl₂ = 40 + (35.5 x 2) = 40 + 71 = 111 g
2.- Calculate the moles of CaCl₂
111g of CaCl₂ ---------------- 1 mol
222.2 f of CaCl₂ ---------------- x
x = (222.2 x 1) / 111
x = 222.2 / 111
x = 2 moles
3.- Calculate the Molarity
Molarity = moles / Volume
-Substitution
Molarity = 2/2
-Result
Molarity = 1
Answer: 1560632 joules
Explanation:
The change in thermal energy (Q) required to heat ice depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = ?
Mass of frozen water (ice) = 1kg
C = 4184 J/(kg K)
Φ = (Final temperature - Initial temperature)
= 100°C - 0°C = 100°C
Convert 100°C to Kelvin
(100°C + 273) = 373K
Then, Q = MCΦ
Q = 1kg x 4184 J/(kg K) x 373K
Q = 1560632 joules
Thus, the change in thermal energy is 1560632 joules
The formula for magnesium chlorate is Mg(ClO3)2.