<h2>
Answer:5

,133.6

,51.18

</h2>
Explanation:
Let
,
be the horizontal and vertical components of velocity.
Question a:
Horizontal component of velocity is the ratio of range and time of flight.
So,horizontal component of velocity is 
So,
Question b:
Time of flight=
So,
Maximum height is given by 
So,maximum height is 
Question c:
The vertical velocity is already calculated in Question b.

Answer:
F = - 3.53 10⁵ N
Explanation:
This problem must be solved using the relationship between momentum and the amount of movement.
I = F t = Δp
To find the time we use that the average speed in the contact is constant (v = 600m / s), let's use the uniform movement ratio
v = d / t
t = d / v
Reduce SI system
m = 26 g ( 1 kg/1000g) = 26 10⁻³ kg
d = 50 mm ( 1m/ 1000 mm) = 50 10⁻³ m
Let's calculate
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
With this value we use the momentum and momentum relationship
F t = m v - m v₀
As the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26 10⁻³ (-500 - 630) / 8.33 10⁻⁵
F = - 3.53 10⁵ N
The negative sign indicates that the force is exerted against the bullet
Answer:
Mass of the sled in the snow 83.33 kg.
<u>Explanation</u>:
Given that,
Force applied to move the sled in the snow (F) = 75N

We know that
Newton's second law of motion is

F = ma (Or "force" is equal to "mass" times "acceleration".)
So if we move this around we can isolate mass and get mass


M = 83.33 kg
Mass of the sled in the snow <u>83.33 kg.</u>
It's actually Friction.
I just did the test and got it right.
The temperature of the air above it