Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From he question we are told that
The first mass is 
The second mass is 
From the question we can see that at equilibrium the moment about the point where the string holding the bar (where
are hanged ) is attached is zero
Therefore we can say that

Making x the subject of the formula



Looking at the diagram we can see that the tension T on the string holding the bar where
are hanged is as a result of the masses (
)
Also at equilibrium the moment about the point where the string holding the bar (where (
) and
are hanged ) is attached is zero
So basically


Making
subject


Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Answer:
1.58 W
Explanation:
Since the sound spreads uniformly in all directions, it must be in a form of a circle with radius of 12 m. So the area of the circle is

From the intensity of the sound we can calculate the power at 12 m

Answer:
after a product has been improved and approved? reporting the results finding ways to lower costs selling a prototype determining criteria.
Explanation: