Answer:
0.27 atm
Explanation:
<em>At 25ºC, Kp = 2.9 x 10⁻³ for the reaction NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g). In an experiment carried out at 25ºC, a certain amount of NH₄OCONH₂ is placed in an evacuated rigid container and allowed to come to equilibrium. Calculate the total pressure in the container at equilibrium.</em>
Step 1: Make an ICE chart
Solid and liquids are ignored in ICE charts.
NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g)
I 0 0
C +2x +x
E 2x x
Step 2: Write the pressure equilibrium constant expression (Kp)
Kp = [NH₃]² × [CO₂]
Kp = (2x)² × x
2.9 × 10⁻³ = 4 x³
x = 0.090 atm
Step 3: Calculate the pressures at equilbrium
pNH₃ = 2x = 2(0.090 atm) = 0.18 atm
pCO₂ = x = 0.090 atm
The total pressure is:
P = 0.18 atm + 0.090 atm = 0.27 atm
Answer:
just a few days later this morning and Video is a bit more than
Explanation:
free fire in a good place for me to do it all in a great time for
<span>The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases. you can look it up in Google</span>
Answer:
Option A. 107 mL
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 150 mL
Initial pressure (P₁) = 500 mmHg
Final pressure (P₂) = 700 mmHg
Temperature = constant
Final volume (V₂) =?
The final volume of the gas can be obtained by using the Boyle's law equation as shown below:
P₁V₁ = P₂V₂
500 × 150 = 700 × V₂
75000 = 700 × V₂
Divide both side by 700
V₂ = 75000 / 700
V₂ = 107 mL
Therefore, the final volume of the gas is 107 mL.
Answer:
the axis is tilted at 98 degrees
Explanation:
Uranus is blue, not green; it has an atmosphere of hydrogen and helium, not methane. While it does have an icy cold temperature, that's not a very unusual characteristic for an outer planet. However, the tilt of the axis is unusual; no other planet is tilted almost completely on its side!