The magnetic field at center of circular loops of wire is 3.78 x 10¯⁵ T.
We need to know about the magnetic field at the center of circular loops of wire to solve this problem. The magnetic field at the center can be determined as
B = μ₀ . I / 2r
where B is magnetic field, μ₀ is vacuum permeability (4π×10¯⁷ H/m), I is the current and r is radius.
From the question above, we know that:
r = 4 cm = 0.04 m
I = 1.7 A
By substituting the parameter, we get
B = μ₀ . I / 2r
B = 4π×10¯⁷ . 1.7 / (2.0.04)
B = 2.67 x 10¯⁵ T
Due to the perpendicular plane of loops, the total magnetic field at center will be
Btotal = √(2(B²))
Btotal = √(2(2.67 x 10¯⁵²))
Btotal = 3.78 x 10¯⁵ T
Find more on magnetic field at: brainly.com/question/7802337
#SPJ4
Answer:
B. If the container is cooled, the gas particles will lose kinetic energy and temperature will decrease.
C. If the gas particles move more quickly, they will collide more frequently with the walls of the container and pressure will increase.
E. If the gas particles move more quickly, they will collide with the walls of the container more often and with more force, and pressure will increase.
#FreeMelvin
Force=mass*acceleration
F=ma
20=2.8a
a=20/2.8
a=7.14 m/s^2