Yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
The speed of sound in a solid would be 6000 metres per second
Answer:
(a) The speed of the first particle is 1.75 m/s. The speed of the second particle is 6.9 m/s after the collision.
(b) The speed of the first particle is 3.45 m/s in the negative direction. The speed of the second particle is 1.73 m/s.
(c) The final kinetic energy of the incident particle in part (a) and part(b) is 0.0031 J and 0.011 J, respectively.
Explanation:
(a)
In an elastic collision, both momentum and energy is conserved.

Combining these equations will give the speed of the second particle.

We can use this to find the speed of the first particle.

(b)
If m_2 = 10g.


The minus sign indicates that the first particle turns back after the collision.
(c)
The final kinetic energy of the particle in part (a) and part (b) is
The answer & explanation for this question is given in the attachment below.
The vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
<h3>Tension in the cable</h3>
Apply the principle of moment and calculate the tension in the cable;
Clockwise torque = TL sinθ
Anticlockwise torque = ¹/₂WL
TL sinθ = ¹/₂WL
T sinθ = ¹/₂W
T = (W)/(2 sinθ)
T = (29 x 9.8)/(2 x sin57)
T = 169.43 N
<h3>Vertical component of the force</h3>
T + F = W
F = W - T
F = (9.8 x 29) - 169.43
F = 114.77 N
Thus, the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1