We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer is D - five.
<em>Explanation;</em>
- Electron dot diagrams show the valence electrons around the element by using dots.
- Valence electrons are the electrons which are in outermost shell of the atom.
-The atomic number of the N atom is 7.
Atomic number = number of protons = 7
If the atom is neutral,
number of protons = number of electrons.
Hence, N atom has 7 electrons.
- The electron configuration is 1s² 2s² 2p³.
Hence, N atom has 2 + 3 = 5 valence electrons. So, five electrons are represented in electron dot diagram of N.
Explanation:
Given that,
Object-to-image distance d= 71 cm
Image distance = 26 cm
We need to calculate the object distance
We need to calculate the focal length
Using formula of lens
put the value into the formula
The focal length of the lens is 35.52.
(B). Given that,
Object distance = 95 cm
Focal length = 29 cm
We need to calculate the distance of the image
Using formula of lens
Put the value in to the formula
We need to calculate the magnification
Using formula of magnification
The magnification is 0.233.
The image is virtual.
Hence, This is the required solution.
Answer:
mb = 3.75 kg
Explanation:
System of forces in balance
ΣFx =0
ΣFy = 0
Forces acting on the box
T₁ : Tension in string 1 ,at angle of 50° with the horizontal on the left
T₂ = 40 N : Tension in string 2, at angle of 75° with the horizontal on the right.
Wb :Weightt of the box (vertical downward)
x-y T₁ and T₂ components
T₁x= T₁cos50°
T₁y= T₁sin50°
T₂x= 30*cos75° = 7.76 N
T₂y= 30*sin75° = 28.98 N
Calculation of the Wb
ΣFx = 0
T₂x-T₁x = 0
T₂x=T₁x
7.76 = T₁cos50°
T₁ = 7.76 /cos50° = 12.07 N
ΣFy = 0
T₂y+T₁y-Wb = 0
28.98 + 12.07(cos50°) = Wb
Wb = 36.74 N
Calculation of the mb ( mass of the box)
Wb = mb* g
g: acceleration due to gravity = 9.8 m/s²
mb = Wb/g
mb = 36.74 /9.8
mb = 3.75 kg