Answer:
Binomial Nomenclature is a two-term naming system that uses two different terms to name the species, plants, animals and living organisms. ... The two terms consist of a generic epithet which is genus (category) of that species, and specific epithet which indicates the species itself.
Explanation:
The answer that h are looking for is c
Answer:
The easiest way to identify a double displacement reaction is to check to see whether or not the cations exchanged anions with each other.
Explanation:
if the states of matter are cited, is to look for aqueous reactants and the formation of one solid product (since the reaction typically generates a precipitate).
Answer:
0,07448M of phosphate buffer
Explanation:
sodium monohydrogenphosphate (Na₂HP) and sodium dihydrogenphosphate (NaH₂P) react with HCl thus:
Na₂HP + HCl ⇄ NaH₂P + NaCl <em>(1)</em>
NaH₂P + HCl ⇄ H₃P + NaCl <em>(2)</em>
The first endpoint is due the reaction (1), When all phosphate buffer is as NaH₂P form, begins the second reaction. That means that the second endpoint is due the total concentration of phosphate that is obtained thus:
0,01862L of HCl×
= 1,862x10⁻³moles of HCl ≡ moles of phosphate buffer.
The concentration is:
= <em>0,07448M of phosphate buffer</em>
<em></em>
I hope it helps!
Answer:
V₂ = 104.76 mL
Explanation:
Given data:
Initial volume = 100.0 mL
Initial temperature = 21°C (21 + 273.15 K = 294.15 K)
Final temperature = 35°C (35 + 273.15 K = 308.15 k)
Final volume = ?
Solution:
Charles Law:
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ =100.0 mL × 308.15 K / 294.15 K
V₂ = 30815 mL.K /294.15 K
V₂ = 104.76 mL