Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
Oxygen gas was most likely absent from Earth's primitive atmosphere. The current theory is that the Earth's early atmosphere was composed of mainly carbon dioxide and methane due to the high volcanic activity. Cyanobacteria and their use of photosynthesis was what caused earth's atmosphere to become oxygen enriched.
I hope that helps.
Explanation:
I'm pretty sure 1. yes 2. no and 3. it might be yes but I'd just put a maybe
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546
The balanced reaction equation for the combustion of butane is as follows;
C₄H₁₀ + 13/2O₂ ---> 4CO₂ + 5H₂O
the limiting reactant in this reaction is C₄H₁₀ This means that all the butane moles are consumed and amount of product formed depends on the amount of C₄H₁₀ used up.
stoichiometry of C₄H₁₀ to H₂O is 1:5
mass of butane used - 6.97 g
number of moles - 6.97 g / 58 g/mol = 0.12 mol
then the number of water moles produced - 0.12 mol x 5 = 0.6 mol
Therefore mass of water produced - 0.6 mol x 18 g/mol = 10.8 g