Answer:
You need to use charts or a calculator to get 56%
Explanation:
A would be the wavelength, C would be a crest, D would be the amplitude, leaving B which is the trough.
8500 Hz and Longitudinal
Speed = frequency x wavelength
Speed of sound at 20 degrees Celsius is approximately 340 m/s
The speed at which sound travels through the gas in the tube is 719.94m/s
<u>Explanation:</u>
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s