NaHCO3 is the right answer
First, we need to get moles of NaOH:
when moles NaOH = volume * molarity
= 0.02573L * 0.11 M
= 0.0028 moles
from the reaction equation:
H3PO4(aq) + 3NaOH → 3 H2O(l) + Na3PO4(aq)
we can see that when 1 mol H3PO4 reacts with→ 3 mol NaOH
∴ X mol H3PO4 reacts with → 0.0028 moles NaOH
∴ moles H3PO4 = 0.0028 mol / 3 = 9.4 x 10^-4 mol
now we can get the concentration of H3PO4:
∴[H3PO4] = moles H2PO4 / volume
= 9.4 x 10^-4 / 0.034 L
= 0.028 M
Given:
Concentration of Fluoride ions = 0.100 M
Concentration of Hydrogen Fluoride = 0.126 M
Asked: Concentration of fluoride ions after the addition of 5ml of 0.0100 M HCl to 25 mL of the solution
Assume: 50:50 ratio of fluoride ions and HF
12.5ml*0.1mol/L *1L/1000mL + 12.5*0.126mol/L * 1L/1000mL = 2.825x10^-3 moles F-
5ml * 0.01 mol/L *1L/1000mL = 5x10^-5 moles
Assume: Volume additive
Final concentration = 2.825x10^-3 + 5x10^-5 moles/ 30 ml * 1000ml/L =0.0958 M
<span />
The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams
The correct answer is - deflation.
The process of deflation can be caused by the winds. It is an erosive process in which the main role has the wind that is carrying lot of sediment in the shape of very small particles with it.
Through this process, the winds manage to erode large areas, especially in the drier places where the vegetation is very sparsely distributed. By this type of erosion, the winds manage to make lot of hollows that can range significantly in size. The hollows made by the deflation can be anywhere from few cm deep and several meters long, up to several km long and 50-60 meters of depth.
This is the process that is responsible for the creation of most of the oasis in the largest desert in the world, Sahara, some even being lowered enough to be under the sea level.