1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
2 years ago
8

Is this statement true or false? Most metals in the chart react with oxygen.

Physics
1 answer:
n200080 [17]2 years ago
7 0

Answer:

true

Hoped this helped(⁄ ⁄>⁄ ▽ ⁄<⁄ ⁄)

You might be interested in
Use the drop-down menus to explain how noise cancellation works. Waves with similar are created to interfere with unwanted sound
leonid [27]

Amplitudes, and Crests

8 0
2 years ago
Read 2 more answers
Find the position of the center of mass of the system of the sun and Jupiter? (Since Jupiter is more massive than the rest of th
8090 [49]

Answer:

r_{cm} = 0.074 m from the position of the center of the Sun

Explanation:

As we know that mass of Sun and Jupiter is given as

M_s = 1.98 \times 10^{30} kg

M_j = 1.89 \times 10^{27} kg

distance between Sun and Jupiter is given as

r = 7.78 \times 10^{11} m

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them

so we will have

r_{cm} = \frac{M_s r_1 + M_j r_2}{M_s + M_j}

r_{cm} = \frac{1.98 \times 10^{30} (0) + (1.89 \times 10^{27})(7.78 \times 10^{11})}{1.98 \times 10^{30} + 1.89 \times 10^{27}}

r_{cm} = 0.074 m from the position of the center of the Sun

3 0
3 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
An object of irregular shape has a characteristic length of L = 0.5 m and is maintained at a uniform surface temperature of Ts =
goblinko [34]

Answer:

The value of the average convection coefficient is 20 W/Km².

Explanation:

Given that,

For first object,

Characteristic length = 0.5 m

Surface temperature = 400 K

Atmospheric temperature = 300 K

Velocity = 25 m/s

Air velocity = 5 m/s

Characteristic length of second object = 2.5 m

We have same shape and density of both objects so the reynold number will be same,

We need to calculate the value of the average convection coefficient

Using formula of  reynold number for both objects

R_{1}=R_{2}

\dfrac{u_{1}L_{1}}{\eta_{1}}=\dfrac{u_{2}L_{2}}{\eta_{2}}

\dfrac{h_{1}L_{1}}{k_{1}}=\dfrac{h_{2}L_{2}}{k_{2}}

Here, k_{1}=k_{2}

h_{2}=h_{1}\times\dfrac{L_{1}}{L_{2}}

h_{2}=\dfrac{q}{T_{2}-T_{1}}\times\dfrac{L_{1}}{L_{2}}

Put the value into the formula

h_{2}=\dfrac{10000}{400-300}\times\dfrac{0.5}{2.5}

h_{2}=20\ W/Km^2

Hence, The value of the average convection coefficient is 20 W/Km².

7 0
3 years ago
Organisms that live on or burrow into the ocean floor are
creativ13 [48]
Benthos 

Option b is the answer



8 0
3 years ago
Read 2 more answers
Other questions:
  • Correct the sentence below to reflect an “I” statement. 
    13·2 answers
  • A student is trying to determine if a solution is acidic or basic. She does not have any litmus paper. Which would she most like
    12·1 answer
  • According to the Hooke’s law formula, the force is proportional to what measurement?
    14·2 answers
  • A blackbody curve relates _____. intensity of radiation to energy intensity of radiation to wavelength wavelength to energy surf
    11·2 answers
  • Suppose that a 1000 kg car is traveling at 25 m/s. Its brakes can apply a force of 5000N. What is the minimum distance required
    9·1 answer
  • A 1.6 kg ball is attached to the end of a 0.40 m string to form a pendulum. This pendulum is released from rest with the string
    15·1 answer
  • How do you measure the wavelength of a wave?
    8·2 answers
  • In a chemical reaction, substances react in a specific ratio. Chemical reactions are used to make many products, including food.
    10·1 answer
  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitu
    8·1 answer
  • What is the net force 100n to the left 100 n to the right
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!