Answer:
Electric Field = E = 36.848 N/C
Explanation:
In accordance with Columb's law
E = k Q1 Q2 / r.r = 8.99 x 10^9 x 5.0 x 10^-6 x 5.8 x 10^-6 / 0.084 x 0.084
= 36948.6961 x 10^-3 = 36.848 N/C
Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.
<span>ATP is required for both light-dependent and light-independent reactions.
ATP stands for </span> adenosine triphosphate.
Hope this helps ;)