Answer:


Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

The horizontal component of the velocity is always the same:

The vertical component at t=5.5 s is:


The answer:
<span>When the elevator accelerates upward at a rate of 3.6 m/s², the value of the acceleration becomes
</span>A=g+3.6=13.4 m/s²
and by using the newton's law, F=mass x A, we have
T1= (24 + 90 )x 13.4= 1527.6 N, where T1 is the <span>Tension in upper rope
</span> and
T2= ( 90 )x 13.4= 1206N, where T2 is the Tension in lower rope
When the elevator accelerates downward at a rate of 3.6 m/s², the value of the acceleration becomes
A=9.8 - 3.6 = 6.2 m/s²
T1= (24 + 90 )x 6.2= 706.8 N, where T1 is the Tension in upper rope
and
T2= ( 90 )x 6.2= 558N, where T2 is the Tension in lower rope
Assuming that what you typed meant 20 seconds, rather than 2o seconds, the car is travelling at a velocity of 200 meters per second.