Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
The correct answer of this question is : A) Change alternating current into direct current.
EXPLANATION :
As per the question, we are given vacuum tube. Vacuum tube can be of various types. Normally it contains two electrodes called cathode and anode which are enclosed in an evacuated glass chamber . There are also other types of vacuum tubes which contain extra electrodes like control grid .
The vacuum tube can be used as a rectifier. It means that it can be used as an electronic device which will convert alternating current into direct current. It may be a half wave rectifier or a full wave rectifier. Actually the direct current obtained during the rectification of alternating current is pulsating in nature.
Hence, the correct answer is that a vacuum tube can be used to change alternating current into direct current.
Answer:
T = 3.23 s
Explanation:
In the simple harmonic movement of a spring with a mass the angular velocity is given by
w = √ K / m
With the initial data let's look for the ratio k / m
The angular velocity is related to the frequency and period
w = 2π f = 2π / T
2π / T = √ k / m
k₀ / m₀ = (2π / T)²
k₀ / m₀ = (2π / 3.0)²
k₀ / m₀ = 4.3865
The period on the new planet is
2π / T = √ k / m
T = 2π √ m / k
In this case the amounts are
m = 6 m₀
k = 10 k₀
We replace
T = 2π√6m₀ / 10k₀
T = 2π √6/10 √m₀ / k₀
T = 2π √ 0.6 √1 / 4.3865
T = 3.23 s
They are attractive
They don’t depend on charge
Given:
Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min
Required:
Inlet flowrate
Solution:
The problem can be solved by this general formula.
Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
First, we need to convert the units of the accumulation velocity into m/s to be consistent.
Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s
We then calculate the area of the pool and the area of the orifice by:
Area of pool = 3 × 4 m²
Area of pool = 12m²
Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²
Since we have all we need, we plug in the values to the general equation earlier
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²
Transposing terms,
Inlet flowrate = 0.316 m³/s