The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.
Explanation:
(a) Frequency of radar energy, 
The relation between frequency and wavelength is given by :




or

(b) If wavelength, 




or
f = 1.2 GHz
Hence, this is the required solution.
Correct answer is A
Voltaic Piles
Answer:
10000W
Explanation:
work=1000*200=200000
then
P=work/time=200000/20=10000W
Answer:
3.7 m/s^2
Explanation:
The period of a simple pendulum is given by:

where L is the length of the pendulum and g is the free-fall acceleration on the planet.
Calling L the length of the pendulum, we know that:
is the period of the pendulum on Earth, and
is the free-fall acceleration on Earth
is the period of the pendulum on Mars, and
is the free-fall acceleration on Mars
Dividing the two expressions we get

And re-arranging it we can find the value of the free-fall acceleration on Mars:
