Answer:
Comets
Explanation:
The Kuiper Belt is a collection of trans-Neptunian objects that consist of comets and other dwarf planets, including Pluto.
<span>436 km
The conversion factor between kilocalorie/hour and watts is 1.163 (1 kcal/hr = 1.163 watt). So let's convert the energy consumption of the bird from watts to kcal/hr
3.7 w / 1.163 w hr/kcal = 3.18 kcal /hr
1 gram of fat has 9 kcal, so the total number of kcals consumed will be 4 * 9 = 36.
So the bird can fly for 36/3.18 = 11.32 hours
The distance traveled will be
11.32 h * 3600 s/h * 10.7 m/s / 1000 m/km = 436 km</span>
Answer:
h = 4.04 m
Explanation:
Given that,
Mass of a child, m = 25 kg
The speed of the child at the bottom of the swing is 8.9 m/s
We need to find the height in the air is the child is able to swing. Let the height is h. Using the conservation of energy such that,

Put all the values,

So, the child is able to go at a height of 4.04 m.
Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,

or

substituting the values in the equation we get,

or

or
X = 26.47°
similarly,

or

or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.
In order to make his measurements for determining the Earth-Sun distance, Aristarchus waited for the Moon's phase to be exactly half full while the Sun was still visible in the sky. For this reason, he chose the time of a half (quarter) moon.
<h3 /><h3>How did Aristarchus calculate the distance to the Sun?</h3>
It was now possible for another Greek astronomer, Aristarchus, to attempt to determine the Earth's distance from the Sun after learning the distance to the Moon. Aristarchus discovered that the Moon, the Earth, and the Sun formed a right triangle when they were all equally illuminated. Now that he was aware of the distance between the Earth and the Moon, all he needed to know to calculate the Sun's distance was the current angle between the Moon and the Sun. It was a wonderful argument that was weakened by scant evidence. Aristarchus calculated this angle to be 87 degrees using only his eyes, which was not far off from the actual number of 89.83 degrees. But when there are significant distances involved, even slight inaccuracies might suddenly become significant. His outcome was more than a thousand times off.
To know more about how Aristarchus calculate the distance to the Sun, visit:
brainly.com/question/26241069
#SPJ4